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ABSTRACT

Many scenes contain significant textual information that can be extremely helpful for understanding and/or navigation.
For example, text-based information can frequently be the primary cure used for navigating inside buildings.  One might first
read a marquee, then look for an appropriate hallway and walk along reading door signs and nameplates until the destination is
found.  Optical character recognition has been studied extensively in recent years, but has been applied almost exclusively to
printed documents.  As these techniques improve it becomes reasonable to ask whether they can be applied to an arbitrary
scene in an attempt to extract text-based information.  Before an automated system can be expected to navigate by reading
signs, however, the text must first be segmented from the rest of the scene.  This paper discusses the feasibility of extracting
text from an arbitrary scene and using that information to guide the navigation of a mobile robot.  We consider some simple
techniques for first locating text components and then tracking the individual characters to form words and phrases.  Results
for some sample images are also presented.

1. INTRODUCTION

In the earliest days of mobile robots the robot found its way around the world by following a reflective tape or a magnetic
wire buried in the floor. The robot never got lost, did not need to be able to dead reckon its position very accurately, and
needed only the simplest sensors to tell it when to stop if something was in its path. This approach was generally considered
too limited for most applications, and AI researchers have spent the last decade developing more and more detailed
representation schemes to allow a robot, equipped with a host of sensors and varying amounts of compute power, to calculate
its new position in the world. The text extraction system presented here allows a mobile robot to navigate indoors with no
more modification to the environment than is normally done for humans, i.e., the display of room numbers and names.

Other representation schemes which have relied on geometric constructions such as Voronoi diagrams1, begin to break
down when faced with minor dynamic changes in the environment. Certainty grids2,3 and message passing networks
implemented on parallel computers4,5 are being developed to handle dynamic environments. While these systems appear more
robust, they are more costly in terms of compute power and storage requirements.  Hierarchical systems such as SPAM6 have
been used to efficiently capture some aspects of the uncertainty of the world, but center based representations have trouble
reasoning about object connectivity. Graph based approaches7 capture room connectivity, but have trouble with metrical
information. Network representations like Mercator8 allow the robot to reason in detail on a local scale about objects, but do
not handle open space well and therefore have certain limitations with respect to route planning.

In just the last few years, strong evidence has appeared that a detailed representation is not necessary for many primitive
robot activities9-12. Mobile robots have been built that are able to explore, and avoid obstacles without forming any internal
model of the exterior world13. Even though these systems are limited in the amount of "useful" work that they are able to do
without any representation, they do provide evidence that the detailed representations used by a Mercator like system are not
actually necessary just to have a robot walk through a crowded room.

In Section 2. we describe a spatial representation scheme that exploits room numbers, building street addresses, etc., that
are commonly used by people for navigating  about the urban world.  This representation scheme is designed to be used by a
robot with reactive abilities. The robot should be capable of making its way through the local environment, whereas this



representation scheme is designed for more global navigation.  In Section 3. we present a technique for extracting from a
simple world scene the textual cues necessary to support this representation scheme.  

2. SIGN POST REPRESENTATION

The Sign Post Representation (SPR) is a hierarchical representation for capturing the salient points about how an area of
space is labeled. SPR represents connectivity but is very sparse; including only the points of interest. The SPR for a street
consists of some labeling information, aliases for the name of the street, and information about the known connections with
other streets or points of interest. The information about connections can range anywhere from listing every building and
intersecting street that exists, to only those that are well known and of major importance. In other words, an SPR does not
have to be complete to be useful.

The SPR for a building contains a list of floor maps. Each floor map contains a list of hall maps. Each hall map
contains the labeling scheme, and connections to the other hall maps and whether those connections occur at the end or
between the appropriate labels. Only the important rooms are explicitly represented, with others implicitly represented by the
labeling scheme. Each item in an SPR can have a global orientation or a comment on its topology (meandering or
circuitous). Orientations may be interspersed with connections and details to express a structure that is changing direction,
e.g., a winding road may have different orientations at different points.  If, however, there are no details or intersections then
only the start and end orientations matter.

Figure 1 shows the syntax for SPR. The representation is structured as a set of lists. The first item in the list is an
identifier. This can be followed by alternative names for that item, its orientation, topology, and labeling scheme. At the end
is a collection of the relationships this item has with other objects in the world.

(identifier|sequence
   [(aliases -alternative ids-)]
   [(contains -spr-ids-)]
   [(orientation global-direction)]
   [(circuit|circuit-left|circuit-right)]
   [(labels {increasing|decreasing sequential complete|incomplete
             right-even|right-odd left-even|left-odd
             (initial initial-value) (final final-value)})]
   -relationships-)

Figure 1: The Syntax of SPR.

The relationships relate other objects in the world to the one at the head of the particular SPR. Figure 2 presents a floor
map for a building with some of the room numbers given explicitly. This building has a foyer, and then a main hallway that
encircles the entire building. There are twelve rooms numbered 101 through 112. The rooms are numbered sequentially with
no pattern of odd or even having a particular side preference. Figure 3 gives the SPR for this floor plan.

The SPR in Figure 3 is in three pieces. The first is the SPR for the building itself; in this having only containment
information. The SPR's for the two parts of the building then follow. There is little of interest in the foyer except how it
connects to the main hallway. The SPR for the main hallway contains more information: it is a complete circuit making left-
hand turns, at the start you are facing North, the room labels increase as you go, there are no holes in the numbering, and
they start at 101 and go through 112. The placement of those rooms numbered explicitly is given in relation to the bends in
the hallway. A more complete description of the SPR representation can be found in Reference 14.

3. EXTRACTING TEXT

Optical character recognition techniques have now progressed to the point where documents that contain both text and
graphics can be processed by nearly automatic means. It is reasonable to ask whether the segmentation techniques used to
process such mixed-mode documents could also be applied to a world scene in order to extract sign-post information.  We
look here to techniques recently described in the literature,15-18 and settle on the basic approach of thresholding the image,
filtering connected components based on character-like attributes, and then tracking the centers of individual characters to form



longer strings.   This tracking approach is inspired by the tracking algorithms frequently found in raster to vector conversion
and/or polygonal approximation systems.19-24
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Figure 2.   Floor map of Post Office

(Post-office  (aliases Figure-3)  
              (contains foyer hallway-1)
              (start foyer)
(foyer  (tee  (left  (end hallway-1))
              (right  (start hallway-1))))
(hallway-1  (circuit-left) 
            (orientation north)  
            (labels increasing sequential 
                    complete (initial 101)
                    (final 112) )
            (left 101)  (left-bend)  
            (right 105)  (left-bend)
            (left 106)  (right 110)
            (left-bend)  (left 112) )

Figure 3.  The SPR for the Post Office

The following is a brief overview of the algorithm as it is currently implemented.  The process begins with a high
resolution gray scale image which is thresholded to form a binary image.  Connected components within this binary image
are found and some simple attributes such as height, width, density, etc., of each component are computed.   Then, depending
on the expected size of the text to be detected,  components are segmented into those that are likely to be text and those that
are not.  The non-text components are deleted and the remaining image is then sampled with the center of each text
component being mapped to the nearest sampled point.  Once this reduced resolution image is formed, adjacent pixels are
tracked to form the longest straight line possible.  In the ideal situation, the centers of text components that were adjacent
characters of a word in the original image would be mapped to adjacent pixels in the sampled image.   Of course, the ideal is
rarely the case and so the algorithm must also be able to track nearly adjacent pixels as well.  Once a text string has been
tracked the orientation of the line joining the first and last character is noted and the entire string is rotated to horizontal  in
order to facilitate automatic character recognition.

3.1.               Finding       character       components

Any good connected component finding algorithm could be used in this context.  We have chosen to implement a
variation of the stack based, scan line algorithm as presented in Reference 25.  The assumption is that the entire image is in
memory and so the cost of accessing any given pixel is constant, that is, the image does not have to be completely processed
in scan line order.  Ultimately the finding of connected components could be done in hardware and so the efficiency of this
part of the algorithm is not a major concern.  We have also chosen to find 4-connected components rather than 8-connected
components thereby increasing the number of components eventually found.  The trade-off here is in risking that a single
character might be broken into two pieces in return for improving the chances that characters will be cleanly segmented from
each other and from the surrounding components.

Once the connected components have been found, the pixel height, width, area, and aspect ratio of each circumscribing
rectangle, as well as the density of the image within each rectangle, are recorded.    We have found that area, aspect ratio, and



image density can be misleading  so  as  to  cause  both types of errors,  that is, mislabeling  text components as non-text
and vice-versa.  An upper-case I  illustrates the problem.  If the string containing this character is oriented horizontally or
vertically, then the density of the character is 1.0, the maximum it can be.  Also, if the resolution is such that the character is
exactly one pixel wide or one pixel high, then the area and the aspect ratio are simply equal to the height or width of the
character.  If, in addition, the character is oriented at 45 degrees, then the density is the minimum possible value for any
connected component, namely, 1/ area .  Thus, for legitimate text components, density can take on any possible value, and
therefore has no discriminating power, and in some cases area and aspect ratio become simply height or width.  The point is
that one gains no additional useful information  about  a component by looking at density, aspect ratio, and area as opposed
to looking only at height and width.

Let res represent the resolution (in pixels per inch) at which the original document was scanned, let tsize be the size  (in
inches) of the text to be detected, and let hcurr and wcurr be the height and width (in pixels) of the given component.  One
obvious approach to detecting text is to mark a component as text if both the height and width are below the appropriate pixel
threshold, that is if  hcurr ≤ 1.4⋅tsize⋅res,  and  wcurr ≤ 1.4⋅tsize⋅res.  The factor of 1.4  on  the  right  hand side of the
inequalities is to account for characters that  are oriented at an angle.  The problem of the upper-case I again points out that
imposing a lower bound on the height and/or width is inappropriate.  The potential difficulty with having no lower bound is
that it mismarks extremely small components as text, a problem which could be significant in a noisy image.  Noting that
every character has at least one dimension that is within about one half of its respective point size, we opt for marking a
component as text if either of the following conditions hold:

0.5⋅tsize⋅res ≤ hcurr  ≤ 1.4 ⋅tsize⋅res  AND  wcurr  ≤ 1.4 ⋅tsize⋅res   or,

0.5⋅tsize⋅res ≤ wcurr  ≤ 1.4 ⋅ptsize⋅res  AND  hcurr  ≤ 1.4⋅tsize⋅res

To allow for the simultaneous detection of a range of font sizes within the same document we can modify the above
inequalities by replacing tsize with mintsize on the left sides and with maxtsize on the right, where mintsize and maxtsize
have the obvious meanings.  Note, however, that the larger this range is the less discriminating the test becomes.  Finally,
we notice that this test will most likely exclude subscripts, superscripts and small punctuation, a problem which might be
solved after a string has been tracked by looking for small nearby components.

3.2        Resolution        Reduction

Once the components have been segmented, those identified as graphics can be subtracted from the image leaving only
the text.   Following a technique presented in Reference 17, the resolution of this remaining image is then reduced by
essentially sampling the image based on the size of the character components. Each text component is mapped to the sample
point nearest to the center of that component, see Figure 4.  The ideal sampling rate would be such that adjacent characters in
the original image get mapped to adjacent pixels in the reduced image. It is, of course, possible to achieve such a mapping
only in the case of a image that contains only uniformly spaced text of a single size.  In most images there will necessarily
be gaps and overlaps in the reduced image.

(a) (b)

Figure 4.  Effects of sampling rate on large and small components.



Referring to Figure 4, let the sampling rate be equal to 0.5⋅mintsize⋅res.  With this sampling rate, adjacent characters
whose dimensions are approximately mintsize will be mapped to pixels that are one apart from each other rather than adjacent.
If the gap between the adjacent characters in the original image is greater than 0.5⋅mintsize, then they will be mapped to
pixels that are two apart, and so on.  With most text fonts, however,  the width of a character is  usually closer to one half
the corresponding point size and so adjacent characters (that are separated by less than 0.5⋅mintsize) will be mapped to adjacent
pixels.  It is this fact that motivates the 0.5 in the formula for the sampling rate.  Of course, if adjacent characters are less
than 0.25 ⋅mintsize wide and are close enough,  then they may be mapped to the same pixel in the reduced image.  In this
case, the components are linked together and a pointer to the list is stored at the appropriate pixel.

When maxtsize is different from mintsize the potential  exists  for  adjacent  characters  to be mapped to pixels that are at
significant distances in the reduced image.  If characters from the text font of size maxtsize are adjacent, assuming again that
they are approximately 0.5⋅maxtsize wide and are no further than 0.5⋅maxtsize apart, then they will be mapped to pixels that
are at a distance of maxtsize/(0.5⋅mintsize) from each other. Keeping maxtsize ≤ 2⋅mintsize will insure that such characters
are no more than four pixels apart.  Clearly, then, the range of fonts to be detected determines how far apart adjacent characters
can be in the reduced image and, in turn, influences the complexity of the tracking algorithm.

3.3        Tracking       algorithm

The next step in the process is to track the adjacent characters as represented by the reduced image.  We look here to a
number of algorithms that have been used to produce polygonal approximations to curves in binary images.  In particular we
note the algorithms of References 21 and 24 as being appropriate starting points for our application.  There are, however, two
important differences between our application and those for which the existing algorithms were developed.  First, since we are
attempting to track text strings, we are looking at data that should be straight rather than attempting to use straight segments
to approximate data that might really be curved.  This allows us to impose slightly more stringent restrictions on the data as
it is being tracked. And secondly, because of the effect of the resolution reduction discussed in the previous section, we are
faced with tracking data points that are not adjacent. These two facts lead to the following tracking algorithm.

The algorithm begins by scanning the entire (reduced) image from left to right and top to bottom searching for a starting
point for the first string.  Any pixel that is non-zero (ie. corresponds to the center of a text component) can be a starting
point.  After a starting point is found the reduced image is searched in a neighborhood of that point to find the nearest text
component.  The size of the neighborhood to be searched is given by (2⋅max(hcurr,wcurr))/(0.5⋅mintsize⋅res).  This ensures
that the next component really is adjacent to the starting point and not a character from a different nearby string.  Once the
second point is found, the horizontal and vertical offsets from the first point are recorded, and the algorithm then searches in
the appropriately sized neighboorhood offset by those same amounts from the second point, and so on.  When checking for
the nearest component, note that distances are measured in the original image rather than in the reduced image.  As soon as
two points have been tracked, the angle that the line joining the centers of the two corresponding components forms with the
horizontal is computed.  Tracking then continues by searching in the appropriately offset neighborhood subject to two
additional constraints which insure that the components lie on a straight line.  The first is a global angle constraint which
requires that the angle between the line joining the starting component to the most previously tracked component and the line
joining the starting component to the component being considered is below some threshold.  The second is a local angle
constraint which requires that the angle between the line joining the starting component to the most previously tracked
component and the line joining the previously tracked component to the component being considered is below another
threshold.  The component under consideration must also be about the same size as the most previously tracked component. If
all of these constraints are met, the component is added to the string and tracking continues.  Finally, when tracking halts for
any reason, the algorithm reverses direction and attempts to extend the string by tracking in the opposite direction.  This is
necessary because we cannot guarantee that tracking was started at one of the end components of the string.

We define a number of identifiers before summarizing the individual steps of the algorithm. Let first, current, and  next
be the initial component in the string, the currently tracked component, and the next component under consideration by the
tracker, respectively.  Let rowoff and coloff be the average row and column offsets between successive components for the
entire string.  Let hcurr,wcurr, hnext, and wnext be the height and width of the current and next components, respectively, and
let aglobal and alocal be the global and local angle thresholds.  The steps of the algorithm are as follows:

STEP 1) Scan the reduced image left to right and top to bottom until a text component is found.  Set first and
current to this component, set rowoff and coloff  to 0.



STEP 2) Using NC, the nearest component rule, find the nearest component to current in a neighborhood offset from
current by (rowoff, coloff).  If a component is found, set next equal to the component found, or to 0  if no
component is found.

STEP 3) If next is not 0, apply A, the angle rule.  If A holds, add next to the string, update current, rowoff, and
coloff and go to STEP 2.  If next is 0 or if A fails, continue to STEP 4.

STEP 4) Swap first and current, negate rowoff and coloff and continue tracking in the reverse direction.
STEP 5) (Same as STEP 2)
STEP 6) (Same as STEP 3, except go to STEP 5 or EXIT)

NC (nearest component rule): Set next equal to the nearest component to current within the given neighborhood,
where distances are measured in the original image.  If no components can be found in this neighborhood, or if
either hcurr and hnext or wcurr and wnext differ by more than a factor of 2, then set next to 0.

A (angle rule): The  angle between the line joining first to current and the line joining first  to next must be less
than or equal to αglobal, and the angle between the line joining first to current and the line joining current  to
next must be less than or equal to αlocal

Figure 5.   David Miller's door. Figure 6.  Cal Ribbens' door.

4. EXPERIMENTAL RESULTS

Figures 5 and 6 show two test images of a typical office doorway.  The images were thresholded at decreasing levels of
brightness and processed at each level.   Figures 7 and 8 show the text extracted from Figures 5 and 6 with only white text
against a black background presented here.  These results are then to be fed into an automatic character recognition module.
Because the characters in Figure 5 are so thin, they are not detected until the last two threshold levels with the first three
iterations producing only noise.  This noise will be rejected at the character recognition phase.   Note that the "E" has been
missed because it is far enough away from the "133" to be considered as a separate string and strings consisting of a single
character cannot be oriented properly by themselves.  Similar results were obtained for the image of Figure 6.  Note here that
the name plate on room 545 is detected at the third threshold level, but disappears at successive levels.  The final iteration
produces both of the room numbers and the name plate on room 547.   

(a) (b) (c) (d) (e)

Figure 7.  Text extracted from image of Figure 5 at various threshold levels.



(a) (b) (c) (d) (e) (f)

Figure 8.  Text extracted from image of Figure 6.

5. CONCLUSIONS

SPR is a simple, space efficient, easy to use representation scheme for use in maneuvering mobile robots through urban
or office domains. The representation can handle incomplete information, does a minimal propagation of erroneous
information, and  is very robust. Most importantly, SPR provides the navigational cues to maneuver a robot through a
complex environment without relying on extraordinary mechanical or sensor accuracy. The cues it provides allow the robot to
perceive if it has passed its destination, whether the world has changed, or if it is getting very close. The representation
exploits the signs and cues that humans use to navigate about streets and buildings, and therefore it does not require that the



environment be modified in any way to make use of this system.

In support of SPR, we have also outlined a possible technique for extracting text from an arbitrary scene.  This
technique is based on first thresholding the image and then  determining connected components.  These components are then
segmented into  text and  graphics based on  the height and width of their surrounding  rectangles,  and  the algorithm then
uses a fast tracking technique to link the characters together into longer text strings.  Once the characters have been tracked
they are rotated to horizontal for processing by automated character recognition.  By using this tracking approach the
computational complexity of other techniques, such as the Hough transform, is avoided. The only parameters to the algorithm
are the resolution of the input image and the range of text sizes to be detected.     
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