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Abstract. This paper briefly describes a robot architecture that has
been under development for the last eight years. This architecture uses
several levels of abstraction and description languages that are compat-
ible between levels. The makeup of the architecture helps to coordinate
planful activities with real-time behaviors for dealing with dynamic en-
vironments. In recent years, many architectures have been created with
similar attributes. The two features that distinguish this architecture
from most of those are: 1) a variety of useful software tools have been
created to help implement this architecture on multiple real robots; and
2) this architecture, or parts of it have been implemented on over half a
dozen very different robot systems using a variety of processors, operat-
ing systems, effectors and sensor suites.

1 Introduction

Since the late eighties we have investigated ways to combine deliberation and
reactivity in robot control architectures to program robots to carry out tasks
robustly in field environments [18, 19, 24, 20, 1, 22]. We believe this integration
is crucial. Not only must an agent be able to adjust to changes in a dynamic sit-
uation, but it must be able to synthesize plans, since the complexities of the real
world make precompiling plans for every situation impractical. We have arrived
at an architecture that is an outgrowth of several lines of situated reasoning re-
search in robot intelligence [3, 11, 8, 10, 4, 27]. This architecture allows a robot,
for example, to accept guidance from a human supervisor, plan a series of activ-
itles at various locations, move among the locations carrying out the activities,
and simultaneously avoid danger and maintain nominal resource levels. We have
used the architecture to program several mobile and manipulator robots in real
world environments and believe that it offers a unifying paradigm for control of
intelligent systems.

Our architecture separates the general robot intelligence problem into three
interacting layers or tiers (and is thus known as JT'):



— A dynamically reprogrammable set of reactive skills coordinated by a skill
manager|[32].

— A sequencing capability that can activate and deactivate sets of skills to
create networks that change the state of the world and accomplish specific
tasks. For this we use the Reactive Action Packages (RAPs) system [7].

— A deliberative planning capability that reasons in depth about goals, re-
sources and timing constraints. For this we use a system known as the Ad-
versarial Planner (AP) [6].

Figure 1 shows how these software layers interact. Imagine a repair robot
charging in a docking bay on a space station. At the beginning of a typical day,
there will be several routine maintenance tasks to perform on the outside of the
station, such as retrieving broken items or inspecting power levels.

The human supervisor gives the robot a high-level goal — to conduct inspec-
tions and repairs at a number of sites — which the planner (deliberative layer)
synthesizes into a partially-ordered list of operators. These operators would call
for the robot to move from site to site conducting the appropriate repair or in-
spection at each site. For our example, we examine a subset of those that might
apply to one site, namely: 1) navigate to the camera-site-1 site; 2) attach to
camera-site-1; 3) unload a repaired camera; and 4) detach from camera-site-1.
Each of these tasks corresponds to one or more sequenced set of actions, or RAPs
[7]. The planner then enters a mode to begin executing its plan and monitor-
ing the results. By matching via unification the planner’s propositional purpose
clauses with the succeed clauses of the RAPs in the RAP library, the planner
selects a navigate RAP to execute the first task.

The RAP interpreter (sequencing layer) decomposes the selected RAP? into
other RAPs and finally activates a specific set of skills in the skill level (reactive
layer). Also activated are a set of event monitors that notifies the sequencing
layer of the occurrence of certain world conditions. In this example, one of the
events being monitored would be when the location of the end of the docking
arm was aligned within some specified tolerance with camera-site-1. When this
event occurs, the clause (at robot camera-site-1) would be posted to the RAP
memory.

The activated skills will move the state of the world in a direction that should
cause the desired events. The sequencing layer will terminate the actions, or
replace them with new actions when the monitoring events are triggered, when
a timeout occurs, or when a new message is received from the deliberative layer
indicating a change of plan. In our example, the navigate RAP’s succeed clause
(at robot camera-site-1) would be true, terminating the RAP and causing the
planner to label its navigate task complete and to execute the attach task.

3 A given RAP can represent a complex, though routine, procedure for accomplish-
ing a task. For instance, in one of our manipulator projects, unloading an item
involves unfastening bolts, two or three tool changes, and the use of a redundant
joint capability.
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2 Software Tools for Architecture Implementation

To support these ideas, and to make the architecture explicit, we have devel-
oped a number of tools and systems for integrating these three layers and for
providing the user with a paradigm for developing robotic applications within
the architecture.

2.1 Skills

We have created a program called a skill manager which acts as the interface
between a set of situated skills and the rest of the architecture. Situated skills
represent the architecture’s connection with the world. The term situated skills
[28] is intended to denote a capability that, if placed in the proper context,
will achieve or maintain a particular state in the world. For example, one might
develop a situated skill for grasping a handle. Such a skill will only be useful if
the robot is currently located in front of a handle; in other situations the skill
will fail. Skills form the robot-specific interface with the world, handling the
real-time transformation of desired state into continuous control of the motors
and interpretation of the sensors.

As robots and other systems can vary greatly in their physical characteristics
and sensor capabilities, the skills that make up the robot’s interface with the
world also vary greatly between robots and environments. However, because we
would like a control architecture that is robot independent, we have developed
a set of tools for constructing these situated skills [32]. This canonical approach
to skill development forces a standard interface among the skills and a standard
interface to the sequencer, independent of the physical characteristics of the
robot and sensors to which they are connected. The representation includes:

1. The skill’s input and output specification. Each skill must provide a descrip-
tion of the inputs it expects and a listing of the outputs that it generates.
This allows skills to be networked by having the outputs of one skill auto-
matically routed to the inputs of another skill.

2. A computational transform. This is where the skill does its work. This func-
tion will be provided with inputs and must generate outputs. This compu-
tation may be run synchronously (i.e., computed each time the function is
called) or asynchronously (returns immediately with the latest results).

3. An initialization routine. Each skill is given the opportunity to initialize itself
when the system is started (e.g., setup communications ports, etc.).

4. An enable function. The sequencer can enable and disable skills. Depending
on the context, a skill is given the opportunity to perform any special start
up procedures each time it is enabled after having been disabled.

5. A disable function. When a skill is no longer needed, the sequencer can
disable it. The disable function performs any necessary cleanup actions.

From the sequencer’s perspective, skills must be capable of being enabled
and disabled in any combination depending on the situation. Except for com-
mon input and output data structures, each skill is totally independent of the



others. At any one time the reactive layer of the architecture is characterized
by the currently enabled network of skills. To provide the sequencer with a uni-
form interface and to allow the skills to communicate with each other, the skill
development environment encapsulates the skills inside the skill manager. The
skill manager also handles the interface with the sequencing system by providing
all of the communications and asynchronous events that the sequencer needs in
order to stay coordinated with the skills.

Through the ability to reconfigure the system depending on the aspect of the
task at hand, the architecture allows developers to focus effort on the important
facets of particular tasks without having to be overly concerned with the way in
which the skills as a whole interact to generate coherent task-directed behavior.
The determination of how best to configure the skills for the situation at hand
is the task of the sequencing layer.

2.2 Sequencing

To accomplish tasks that the robot must routinely perform, the architecture has
a sequencing system. In our case, the sequencer is the RAPs interpreter. In its
simplest form, a RAP is a description of how to accomplish tasks in the world.
For example, a RAP for docking with the hull of a ship might have the following
form:

(define-rap (attach-at-site ?thesite)
(succeed (docked 7theship))
(method m1
(context (ferrous-hull ?thesite))
(sequence
(t1 (approach-site 7thesite) (for t2))
(t2 (magnetically-attach ?thesite)
(wait-for (docked ?thesite)))))
(method m2
(context (not (ferrous-hull ?thesite)))
(sequence
(t1 (approach-site 7thesite) (for t2))
(t2 (grip-attach ?thesite)
(wait-for (docked ?thesite))))))

Notice that the way the task is accomplished is dependent upon the robot’s
knowledge of the situation. So, in the above example the robot accomplishes
the task of attach-at-site differently depending on whether the spacecraft’s hull
is ferrous or not. Further distinctions could be made depending on the size of
the craft or on any other task relevant feature. The sequencer contains a library
of such RAPs, each keyed to specific situations and each activating a different
set of skills in order to accomplish its particular task. In the above example, the
wait-for statements cause the RAP interpreter to block that branch of the task
execution until a reply is received from the skill manager. Replies are produced
by special skills called events. Events take inputs from other skills and notify the



sequencer whenever a desired state has been detected. Thus, events represent the
mechanism by which the sequencer determines when a particular subtask has
been accomplished as well as keeps track of changes in the state of the world.
The RAP interpreter runs in a continuous loop installing new goals on its
agenda, deinstalling old goals that have been achieved or that have failed, decom-
posing higher level RAPs into lower level RAPs, activating or deactivating skills
and watching for responses from event skills. On each cycle of the interpreter, for
each skill that needs activation or deactivation, an activate or deactivate message
is sent to the skill manager which acknowledges the messages and activates or de-
activates the skills. Usually the sequencer will have requested activation of event
skills; and in those cases on each cycle it listens (on the port or communications
socket) for a response from the skill manager that an event has occurred. So in
the example above, for method m1, the approach-site,magnetically-attach
and docked skills will be activated. Assuming there are no other RAPs pending,
the interpreter will just cycle listening for an event-occurred message from the
skill manager. When the docked event occurs, such a message will be sent by the
skill manager, and when the sequencer receives it, an event memory rule such as

(define-memory-rule (attach-at-site ?thesite) :event
(rule
(¢
(mem-add (docked ?theship)))))

will fire, adding the (docked 7theship) proposition to the RAP memory.
Since this will unify with the succeed clause, the RAP will terminate successfully.

Sequencing, married to reaction, yields significantly better task coverage than
either of the two can provide alone. Still, the combination of the sequencing
and reactive layers is not structured to perform complicated resource allocation
reasoning. Nor are these two layers efficient at reasoning about the failure re-
quirements or consequences of a task. So where the sequencer gains in its ability
to handle routine situations (e.g., unload a camera, move to a site), it lacks the
ability to string these routine tasks together in order to manifest the required
“global” behavior. The ability to consider the global implications of actions is
exactly the task for which deliberative planners are designed.

2.3 Planning

Our view is that there is a role for state-based planning in robotic intelligence,
but it should be limited to tasks that are difficult to specify as sequences of
common robotic skills. When planning is necessary, the planner operates at the
highest level of abstraction possible so as to make its problem space as small as
possible.

The role of reaction is to control real-time behavior. The role of sequencing
is to control rote or iterative series of real-time behaviors. In the process, the
sequencing layer will raise the level of abstraction of the activities with which
the planner will concern itself. This simplifies the planning problem because it



lets a few operators stand for many essentially linear planning problems. The
ability of the RAP system to deal with iterative behavior greatly simplifies the
planner’s representation, allowing the simple state representation common to
classical planning to suffice in most common situations. Importantly, all three
layers must operate concurrently and asynchronously. Accomplishing this is the
key to making planning useful in a robot.

The planner we are using in our experiments, AP [5], is similar to many state-
based, hierarchical, non-linear planners. It searches a space of plans to decompose
a highly abstract goal into more detailed subgoals, using preconditions and effects
as the constraints. AP also has a number of features which make it compelling to
use for robot planning. One aspect of intelligent robots overlooked by both the
planning and robot control communities is that robots will normally not be fully
autonomous but will be working in conjunction with other agents — a human
giving orders as a minimum. Multiagent control is necessary when more than
one robot is employed to carry out tasks, when a single robot has to coordinate
the use of its own resources (e.g., arms and grippers), or when multiple robots
are operating independently on multiple tasks in a shared environment.

AP was designed to deal with multiagent coordination by extending its state-
based planning to reason about the conditions that hold during actions. This ca-
pability allows AP to plan activities such as two robots carrying a bulky object.
The following operator is an example from a test domain. Note the planner can
instantiate the variables ?arm-or-robotl and ?arm-or-robot2 with any agent
that meets the constraints. A two-armed robot or two single-armed robots might
be used. The temporal relation simultaneous imposes a non-codesignation con-
straint on the agents so that a very strong one-armed robot would not qualify.
This particular temporal constraint also affects the temporal duration calcula-
tions AP uses when it constructs a schedule to go with its plan, and AP’s plan
execution monitor. Certain other temporal constraints in AP’s language allow
(but do not mandate) codesignation.

(Operator grasp-bulky-object
:purpose (holding ?planner 7large-thing)
rarguments
((?size-of-thing
(get-value 7large-thing ’size)))
:preconditions
((top ?large-thing clear)
(on ?large-thing ?something))
:constraints
((can-lift 7arm-or-roboti
(* 0.5 ?size-of-thing))
(can-1ift ?arm-or-robot2
(* 0.5 ?size-of-thing))
:plot
(simultaneous
(grip ?arm-or-robotl ?large-thing)
(grip ?arm-or-robot2 ?large-thing))



:effects
((holding ?planner ?large-thing)
(top ?something clear)
(on ?large-thing nothing)))

Another attractive feature of AP for this work is that it can reason about
uncontrolled agents — a result of its original development for adversarial plan-
ning. An uncontrolled agent might be a human operating in the environment
along with a robot, or even nature. AP uses a counterplanning mode to reason
about how preconditions or during conditions in a plan might be negated by
an uncontrolled agent, thus thwarting the plan. These problems are addressed
by augmenting the plan with operations that prevent the negative effects of the
uncontrolled action. This amounts to reasoning about situation-specific precon-
ditions, and is the way AP addresses the qualification problem [25]. AP can
use these adversarial reasoning capabilities as a risk assessment mechanism to
consider the probability of dangerous interactions with other agents.

The interface of the planner to the RAPs system takes place during execution
monitoring and is tied to the primitive planner operators — i.e., those operators
without plots. In general, AP’s execution monitor examines the current plan in
light of the current perceived situation, and decides a) which agents have plan
steps that can be executed, and b) which next step each agent should carry out.
In the most basic interface, the execution monitor unifies the purpose of each
agent’s next activity with a clause in the succeed clause of a RAP. For example,
a purpose clause of a go-to-place operator might be (at 7planner 7place)
which might be one of the propositions in the succeed clause in a “take-up-
position-at” RAP. Having found a RAP with such a succeed clause for each
agent, the execution monitor installs the instantiated RAPs as goals on the RAP
agenda. If no RAP has such a clause, an error condition exists (this would be
discovered when the primitive operator is defined). When the RAP system has
no more goals to execute, the execution monitor updates its perceived situation
by querying the RAPs memory and then generates the next activity list.

To support replanning, the AP execution monitor also checks on agents, time,
and preconditions. The status of agents is made available from the RAP memory
and can trigger the reassignment of agents for future tasks. The current time is
maintained in RAP memory, and AP uses it to judge the progress of the plan
and to adjust the plan schedule of earliest and latest start and end times for
each operator as well as the final completion time of the plan itself. Finally,
the preconditions used in the primitive plan operators are ascertained by the
execution monitor from the RAP memory in the same manner as the purpose
clauses.

2.4 Approaches to achieving coherent overall behavior

There are at least three different types of planner control that we have struc-
tured 4T to support: top down, problem-solving, and concurrent planning and
execution. Top down control of multi-tiered architectures is the traditional struc-
ture for Al planning systems. Goals come in to the planner, the planner creates



a plan to accomplish the goals, and the plan is executed one step at a time.
The 4T architecture supports this technique by allowing a planner to hand plan
steps (or a whole plan) to the sequencer via the task agenda. The planner can
then monitor plan execution by waiting for sequencer messages that signify the
completion of each task.

An alternative flow of control focuses on the sequencer. Methods can be
included at the sequencing level to recognize when certain situations arise and
then call special purpose problem solvers to deal with those situations as needed.
For example, a sequencer method for moving from one place to another might
call a route planner to construct an appropriate set of intermediate steps, or a
method that needs to mate two parts might call the planner to figure out the
best manipulator moves to make.

The JT architecture is also designed to support a very dynamic flow of control,
with the planner and sequencer running concurrently and each making changes
to the task agenda. The sequencer takes tasks to execute from the agenda and
adds new subtasks generated during execution. The planner adds and deletes
tasks from the agenda, as well as placing ordering constraints on tasks already
in the agenda. Thus, the planner tries to arrange tasks to create a better future
for the robot even while the sequencer is refining and executing those tasks.
This concurrent flow of control is discussed in detail in [12] but has not yet been
implemented.

Using any, or all, of these models of control flow within 4T, the goal is to sup-
port a tight integration of deliberative and reactive control. The planning tier
(and problem solvers) use the sequencer’s routine procedures as primitive oper-
ators. Since the sequencer can deal with many of the details of a situation itself,
plans can be synthesized at a higher level of abstraction than would otherwise be
possible, resulting in faster plan generation and replanning. Further, plans need
only be partially ordered to accommodate any constraints at the planner’s level
of abstraction; the sequencer can instantiate the actual order at execution time.
The only real restriction is that a top-down planner must be cognizant of the
success or failure of the routine procedures of the sequencer, so that appropriate
replanning can be invoked when appropriate.

3 Applications of the architecture

This architecture, and its associated tools have proven useful for the variety of
projects described below. Our experience with 3T has shown that it is imminently
practical to implement. RAPs and plan operators generalize across projects with
mobile robots and among those with manipulator robots. This makes the porting
of a full deliberative/reactive capability among those projects essentially one of
writing the low-level skills. Moreover, if a body of low-level software exists to
begin with, developing the skill level reduces to writing an appropriate I/O
wrapper around the existing functions so as to allow them to be enabled by the
skill manager. In many projects, we didn’t use the planner, only the skill manager



and the sequencer. In this section, we present the simplest implementation first
and then increasingly more complete implementations.

3.1 Robotic wheelchair

We have used the skill manager and an abstraction of the sequencing layer to
control a robotic wheelchair[21]. This application uses a computer-controlled
wheelchair outfitted with a variety of proximity and range sensors. The groups
of skills are activated by pressing a particular button. This allows the user to
turn on hall following skills (for example) at the touch of a single button, greatly
reducing the required interaction normally needed for a person to guide an elec-
tric wheelchair.

3.2 Mobile robots for following and approaching

We have applied the skill manager and sequencer to three mobile robots projects
that involve following and/or approaching. The first project is a mobile robot
with a stereo vision system mounted on a pan/tilt/verge head and the task is to
pursue people as they move around our laboratory. The skills on-board the robot
are local navigation with obstacle avoidance (actually, four interacting skills) and
visual acquisition and tracking of the target. The sequencer switches the robot
skill set configuration between acquisition, tracking and reacquisition depending
on the status of the visual tracking system. This robotic system has successfully
tracked people and other robots for up to twenty minutes (sometimes having to
stop and autonomously reacquire the target), while avoiding obstacles [13].

The second mobile robot project is a mobile base with a manipulator. The
task is to approach a workspace, use a wrist-mounted sonar sensor to find an
aluminum can, grasp the can and carry it to another location. In this case, the
skills on-board the robot are local navigation with obstacle avoidance, sonar-
based docking with the workspace, sonar search for the object and manipulator
movement and grasping. The sequencer essentially reconfigures the robot’s skill
set, determining when each particular segment of the task is finished.

The third mobile robot project is a mobile base with a color vision system
mounted on a pan/tilt head and the task is to locate and approach four different
colors in a large room. The skills on-board the robot are local navigation with
obstacle avoidance and color searching, tracking and approaching. The sequencer
determines a search strategy, activates different sets of skills at different phases
of the search and reasons about false detections. This system repeatedly finds
the four colors over an average twenty minute search period, even while being
“tricked” with colors that appear momentarily and then disappear again, only
to be seen later [31].

3.3 Manipulation tasks

We have applied the entire 3T' architecture to a simulation of a three-armed
EVA Helper/Retriever (EVAHR) robot carrying out maintenance tasks around



a space station, much as described in the example used in the introduction. We
then ported this system to a hardware manifestation of such a service robot in a
dual-armed facility known as ARMSS (Automatic Robotic Maintenance of Space
Station). In general, the difference between running 4T on a simulator and on
actual robot hardware was primarily in the interfaces and the level of autonomy.
The planner, RAPs, and the skill manager were essentially unchanged.

In the EVAHR simulation, once the plan is underway, users can interactively
introduce failed grapple fixtures, failed arm joints, and gripper malfunctions.
Simple failures such as failure of an arm or a grapple fixture are handled at the
RAP level. Delays from these recoveries cause the planner to adjust the schedule
of tasks at future sites. More drastic failures will cause the planner to abandon
all tasks at a given site. And with enough malfunctions the planner abandons
the entire plan and directs the robot back to its docking station.

At the ARMSS facility we wrote skill shells which invoked robot control
software that already existed. In this manner, two people were able to command
the arms from RAPs within two weeks time. We also changed the locus of control
from the planner to a human supervisor working at the RAPs level. This allowed
the human supervisor to restart the skill layer and then reinvoke the current
RAP whenever the hardware failed. This ability to allow a human supervisor
to command lower level RAPs to extricate the robot in the case of a hardware
problem was critical to completing several missions.

3.4 Mobile robot errand running

We have applied the entire architecture to one mobile robot project, a Denning
robot whose task is to run simple errands. The robot contains skills that allow it
to follow walls, go to markers and to avoid obstacles and has a RAP library with
sequences for going from place to place, going through doors, checking on the
status of elevators, looking for landmarks, etc. With these routines on-board, we
are able to give the robot goals such as “check if the service elevator is available.”
The robot would then use AP to construct a plan to find its present location,
plan a path to the elevator, navigate out the room, through the door, down the
hall, and to the elevator. Because the planner was used, if the robot’s path is
blocked, it can replan its way. It evaluates the revised plan to make sure that no
deadlines are violated. If the path to the elevator is blocked, and the resulting
go-around is too lengthy, the robot will immediately abandon that goal and
return and report failure.

4 Allocating knowledge across the architecture

Our core software tools, along with many of the RAPs and AP operators are
easily transportable across our projects. The individual skills and events are
easlly transportable across different projects using the same platform, but tend
to be hardware specific. One important research issue is how to decide whether
a certain aspect of a task belongs at the skill level, the sequencer level, or the



planning level. Our work in applying the architecture to the wide variety of
projects described above has led to a preliminary set of dimensions upon which
to divide tasks across the levels.

The first dimension that we use for dividing a task is time. The skill level has
a cycle time on the order of milliseconds; the sequencer level, tenths of seconds;
and the planning level, seconds to tens of seconds. This imposes two constraints.
First, if something must run in a tight loop (i.e., obstacle avoidance) then it
should be a skill. Second, if something runs slowly (i.e., path planning) then it
should not be a skill, as it will slow down the cycle time of the skill manager when
it is active. Similar constraints hold when deciding whether something should
be at the sequencer level or the planner level.

The second dimension that we use for dividing a task is bandwidth. The
data connection between different skills in the skill manager is implemented
using direct memory transfers. The data connection between the skill manager
and RAPs is TCP/IP. Thus, we generally write skills that abstract perceptual
information such that only small amounts of data are passed to RAPs. A RAP
that requires a large amount of data (e.g., an image) should be written as a skill.

The third dimension that we use for dividing a task are the task requirements.
Each level of the architecture has built-in functionality that makes certain oper-
ations easier. For example, RAPs has mechanisms for skill selection, so if a skill
contains many methods for handling different contingencies, then it might be
useful to break that skill into several smaller skills for each contingency and let
a RAP choose among them. Similarly, if a RAP starts doing look-ahead search,
resource allocation or agent selection, then it may be better off as a set of AP
operators, which can then take advantage of AP’s built-in support for these
functions.

The final dimension that we use for dividing a task is the modifiability that
we desire. The skill manager is compiled on-board the robots. If we want to
change a parameter or change the order of execution within a skill, we need to
recompile the skill manager, which often means bringing down the entire robot
system. RAPs and AP, on the other hand, are interpreted and connected to the
robot system through TCP/IP. If we feel that a certain routine will require on-
line modification by a human operator, then we want to put it at the sequencer
or planner level, not at the skill level.

5 Evaluating and comparing the architecture

Our breadth of implementation across several projects has allowed us gain in-
sights into the strengths and weaknesses of the architecture. These insights are
qualitative rather than quantitative. However, there were large quantitative dif-
ferences in development time for getting our robots to change tasks within the
same domain. These tasks just involved changes at the RAP or AP operator
level and no changes at the skill level, as compared to changing the behavior of
a Subsumption [3] controlled robot where the changes percolated through the
entire robot’s code.



We believe that 3T can ease the development of software control code for most
robot systems which are notoriously complex . This is especially true in the case
of multiple robotic subsystems. There are two reasons we believe this is true.
First, the skill manager framework abstracts away the need for the programmer
to explicitly connect the data coming to and from a skill. This was especially
evident in the mobile robot tracking project, where we used skills for movement
and obstacle avoidance and a separate vision system with skills for tracking
moving objects. When we integrated the two systems it was straightforward to
feed the output of the vision tracking skill to the input of the obstacle avoidance
skill so that the robot could follow people while still avoiding obstacles. Similarly,
when we added a color tracking system to the same robot, the code integration
was greatly simplified by the structure of the skill manager.

Second, as mentioned above, by decoupling the real-time execution of skills
from sequencing and planning the use of those skills, we allow for modifications
of sequences and plans without having to reinitialize the robot controllers. Our
approach lends itself naturally to a bottom-up approach to programming robots
whereby lower level skills are written and debugged separately, before being
integrated together to accomplish a task.

Of the robot architectures in use, 3T' has its strongest similarity to AT-
LANTIS [10] since they both grew out of the same research history. ATLANTIS
embodies the “sequencer in control” approach to coherent behavior, whereas
most of the examples used in this paper espouse the “planner in control ap-
proach”. In ATLANTIS, the deliberative layer must be specifically called by
the sequencing layer when the sequencer has nothing else to do. Additionally,
ATLANTIS’ skill level follows a strict data flow model. As such, skill events
which latch certain conditions, are not explicitly supported (though much of
their functionality can be duplicated by the use of state variables). The latching
capability of the events in 4T is such that there are no real-time requirements on
the sequencing layer.

4T shares many aspects of Cypress [30]. Our AP planner is comparable in
representational power to SIPE; RAPs compares favorably with PRS. But be-
cause RAPs were designed to allow integration with conventional AI planners,
we did not have to write an interlingua such as ACTs to achieve such integration.
Additionally, Cypress does not include a canonical interface to different robot
controllers as does gI'’s skill manager.

TCA [26] has been used for a number of robot projects. TCA consists of a
set of task-specific computational processes which communicate with each other
by passing messages through a central control module. TCA is essentially a
specialized operating system for physical devices (i.e., robots). While a process
can be a robot behavior or a task planner, there is no real notion of layers, or
of integrating plan synthesis and reactive execution as in ATLANTIS, Cypress,
and gT. The MIX multi-agent architecture [14] is very similar to TCA, but again,
it is a flat network structure for agents, not a layered framework for integrating
deliberation and reactivity.

While CIRCA [23] has been used mostly with simulations, it does make a



strong claim for meeting hard-real time constraints. While we have the ability
in our architecture to request that specific skills run at a certain frequency, we
have no way of enforcing this request as there is no interruption of skills. As our
robots take on more complex tasks, we believe that we will need to address hard
real-time issues.

Several papers in this volume report on the development of architectures that
appear on the surface to be similar to gT. The INTERRAP model [9] also uses
three layers: a behavior layer, a local planning layer and a cooperative planning
layer. The behavior layer corresponds to the sequencing layer in gI' and the
local planning layer corresponds to gI'’s deliberative layer. The authors chose to
“layer” additional planning specifically for multi-agent activity atop the other
layers. 4T has addressed only top-down control of multiple agents, i.e., a single
“coordinator” at the planning level, not cooperative schemes. But INTERRAP
underestimates the importance of a principled mechanism (the sequencing layer)
for transforming the continuous activity of the robot into the discrete events
needed by the higher levels of the architecture. As the INTERRAP research moves
away from simulations to deal with physical robots with advanced perception
capability, we believe this lack will become more apparent. It seems that with
only a small amount of effort the INTERRAP behavior layer could be modified
to activate and deactivate skills via a skill manager as in 4T.

The SIM_AGENT work [29] shares a similar lack. This tool kit for construct-
ing agents blurs the distinction between continuous physical activity and sym-
bolic state changes. Some operations in the SIM_AGENT framework are “au-
tomatic” and by-pass “normal” processing. Others require some deliberation.
But all use fairly traditional rules and object-oriented methods and procedures.
This makes for easy construction of a variety of approaches to agent operations,
but will most likely require something like the dT skill manager capability to be
effective with physical robots.

6 Future work and conclusions

We have described a robot control architecture that integrates deliberative and
situated reasoning in a representational framework that flows seamlessly from
plan operators to continuous control loops. The architecture has been demon-
strated successfully in a wide range of mobile and manipulator robot projects,
both real and simulated. The architecture comes with a set of software tools
which allow the rapid implementation of complex control systems.

The modularity of the architecture provides several benefits. A task-achieving
robot can be realized with just the first or the first and second tiers, albeit at
a reduced level of functionality. Also, in our experience, while the skills tend
to be robot-specific, the RAPs and plan operators generalize at least among
manipulators and among mobile platforms. As well, the bottom-up development
allows one to add functionality incrementally to the robot, as an increased skill
base gives rise to more task-level capability, which in turn provides for more
flexibility in plan development.



Probably the most fundamental result of this work is a clear demonstration
of the power of abstraction from the continuous activity of the skills level, to
the propositional representation of the sequencer, to the more abstract proposi-
tions of the planning level. The sequencer abstracts present continuous activity
into discrete states, and discrete states into more abstract states. The planner
transforms those abstract states into more abstract states which are useful for
inferring the future implications of the sequencer’s past activities. With the re-
duced search spaces, conventional planning and replanning techniques take on
more power, and the robot can be made to exhibit a level of rationality not
possible with other approaches.

Recently, we have begun to investigate 4I'’s use in non-robotic control sys-
tems. One example is a modified 3T that acts as a World Wide Web (WWW)
robot. This is being accomplished by augmenting the skill layer of the architec-
ture with a set of primitives for retrieving and manipulating Universal Resource
Links (URLs). The task description language of the AP and RAP systems lends
itself to the kinds of activities taken when users must respond to environmental
disasters. For example, in response to a forest fire, the WWW robot searches
the Web to retrieve maps of the location, and then use those maps to create a
logistics plan for fighting the fire. This work is just beginning, but the task and
planning languages embodied in the architecture lend themselves neatly to the
creation of interactive decision aids which require both ”sensing” and ”action”.

We are also exploring the use of 4T for closed ecological support systems
(CELSS). Previous CELSS experiments such as those conducted in the U.S. and
in Russia have shown that most of the crew’s time is spent in crop management
and monitoring environmental control systems. In an effort to automate some
of these processes we have developed the skill and sequencing layers of the ar-
chitecture to control a simulation of an 02-co2 gas exchange system with a crew
of three and a crop of wheat. The skills consist of setting valve openings, plant
lighting levels, suggesting crew activity and monitoring the gas flows and the
storage levels. We are also developing AP plan operators which will determine
the planting cycles of various crops to support gas exchange as well as dietary
requirements of the crew.

Having achieved this framework we have begun to investigate the integra-
tion of other AI disciplines. Natural language is already being researched at the
RAPs level [17]. Machine learning techniques can be investigated from case-based
reasoning in the planning layer to reinforcement learning in the skill layer [2].
And the architecture could benefit from combining with concurrent perception
architectures such as those supporting mapping [16, 15].
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