Simplified Navigation and Traverse Planning for a Long-Range
Planetary Rover

David P. Miller

dpmiller@ou.edu

litan@ou.edu
Aerospace & Mechanical Engineering

Li Tan Scott Swindell

bacchus@ou.edu
Computer Science

University of Oklahoma
Norman, OK 73019

Abstract

This paper presents the sensor and control sys-
tem for SR2, a planetary rover prototype capable of
km+/day traverses through Mars-like terrain. The
control system described allowed the rover to success-
fully navigate Mars-like terrain given a set of way-
points spaced approzximately 100m apart. The control
system wuses input from a variety of semsors includ-
ing heading, roll, pitch, an array of prozimity sensors,
voltage and current sensors, and a depth from stereo
camera system. The control system is adequate, when
combined with the rover’s mobility system to make its
way over or around almost all hazards a rover is likely
to encounter, and to know when it is getting diverted
so far off course that it needs to ask for help. In
a recent field test, the robot autonomously navigated
through 1.8 km of Mars like terrain to reach its goal.
The SR2 is a solar powered, four-wheeled rover that
masses 21kg and fits inside a 90 x 65 x 40cm enve-
lope.

1 Introduction & Motivation

The Sojourner (Mars Pathfinder) Rover was in-
credibly successful — but it only explored an area of
Mars smaller than the front yard of a typical suburban
track-house. The MER mission, scheduled to launch
is 2003, using two much larger “long-range” rovers,
will explore a section of Mars the size of a few football
fields. However, if we are to get an understanding of
Mars, or even of a particular area on Mars, we need
to have the capability of performing truly long tra-
verses to get to separated sampling sites, but maintain
a sense of context on how they are connected [3, 11, 5].

Sojourner and the MER rovers are mechanically ca-

pable of traversing much larger distances than have
been done or are being planned. But the control strat-
egy of the rovers significantly reduces the distance the
robots can travel. Effectively, the robots are never
directed to travel over the horizon, or into an area
that has not been carefully imaged. Due to rocks,
uneven terrain, and limited camera resolution, sel-
dom can a significant path be imaged sufficiently to
meet NASA mission managers’ constraints of accept-
able foreknowledge.

The SR2 robot was created to gather experience
and confidence that long traverses can be safely ac-
complished with a minimum of foreknowledge. SR2
has a number of sensors — many of which provide noisy,
and sometimes unreliable data under field conditions.
The terrain used in the field tests contained a number
of hazards: steep slopes, ridges, rocks and holes in a
distribution similar to that of the Pathfinder landing
site [5]. Despite the unreliability of the sensors and
the hazards of the terrain, SR2 was able to get to the
assigned goals, progressing about 200m/hr towards its
goal.

A key factor in the rover’s capability to traverse
more than a km/day towards its goal is the willing-
ness of mission controllers to turn path planning over
to the rover. As you will see, the rover is not par-
ticularly smart or efficient about its path, but it is
unrelenting. Because there is no need to communi-
cate back to Earth unless the rover gets really stuck!,
the SR2 rover is able to go tens to hundreds of times
further in a day, through more hazardous terrain, then
the Sojourner (and probably MER) rover(s).

The remainder of the paper will describe the navi-
gation hardware and software for the robot. We will

IReally stuck means requiring human guidance to extricate,
not irretrievably wedged. In the latter case, it is too late for
communications.

touch upon some of the behaviors that have been im-
plemented. We will conclude with a review of some of
the results from a field test in the SaltonSea desert,
and observation on the significance of these experi-
ments.

2 Computational System Hardware

SR2 is designed to run in a desert environment us-
ing solar power. The onboard computer system is de-
signed to handle and process stereo-vision data, sensor
data, commands from the operator, control motors,
and transfer images and other rover data between the
rover and the ground station. A PC104 Plus system
was chosen to fulfill these needs. The CPU board has a
PIIT 400MHz processor for all computation, one serial
port to control two rover motors through a mini-SSC
controller, one serial port to transfer compass data,
and one USB port to communicate with the digital sci-
ence cameras. A Wavelan wireless PC card is used for
communication between the rover and ground station.
In addition, an I/O board, IEEE1394 board and quad-
decoder board are used for sensor, camera and motor
encoder readings. All these boards and a power sup-
ply board are PC104 form factor. This power supply
board also provides +5VDC for the USB hub, ranging
sensors, encoders and other items.

3 Sensors

The task of the sensors in the SR2 is to detect ob-
stacles, monitor the current and voltage of the solar
panel and system, and to position the rover. A com-
bination of a magnetic compass and drive motor en-
coders are used to position the rover. The encoders
provide 64 counts per motor rotation or, after all of
the gearing, 131 counts per cm traveled by the rover’s
wheels. The counts between the left and right hand
side are averaged (if the rover spun in place by run-
ning the left and right wheels in opposite directions,
then the average counts for that period should be 0).
All heading information was derived by the compass
[1]. The compass and encoders were updated at 15 Hz
and the compass had an accuracy of £0.5°. The com-
pass and encoder readings are combined to regularly
update the robot’s position.

The obstacles in the environment with which the
rover must deal include big rocks, holes, and slopes
over which the rover cannot climb. The characteristics
of the desert environment must be considered when

selecting sensors. The biggest problem we faced was
high contrast and unusually bright lighting (especially
in the near IR).

SR2 was initially assembled using the Sharp
GP2D12 infrared distance measuring sensor and
Videre Design’s stereo DCAM head. We used SVS
(Small Vision System) [4] as our stereovision process
API. However these did not work well in the extreme
lighting conditions of the field test. Under these light-
ing conditions, the cameras lacked the dynamic range
needed to produce images that could be correctly pro-
cessed by the SVS. As a result, stereo was not used
for navigation during the primary field tests.

After extensive experimentation, we found that
Sharp range sensors such as the GP2D12 [13] would
not give accurate range data under the bright desert
lighting conditions. However, they did prove to be re-
liable as threshold detectors under those conditions.
The threshold range was extended by switching to
a new lens package for the detector - the Sharp
GP2Y0A02YK which provides longer range optics and
better sun shielding. Using the sensors in a threshold
mode to determine whether or not there was an obsta-
cle in the robot’s way, or whether or not the ground
had fallen away proved to be much more noise toler-
ant.

Current sensors and voltage dividers were used to
monitor system current and solar panel voltages. The
system could switch to SLEEP mode if the battery
voltage was too low and wake up when the battery
is charged, though this capability was never tested in
the field. The wireless communications card could be
switched to SLEEP mode in order to save power, but
its resumption had to be done by a timer.

The sample rate of the I/O board also affects the
sensor reading. If the rate is too fast, the system could
not get stable readings, while the system could not
respond in time if the sampling is too slow [10]. The
sampling rate of Sharp sensors was set to 15Hz after
all factors were taken into account.

The compass has direct heading, pitch and roll se-
rial port outputs. The pitch and roll are used to de-
termine if the slope is too high or the rover is rolling
too much.

Motor current was used to detect if a motor stalled
and also as part of the power monitoring system. The
power used by the sensors and computation system
were also monitored.

The SR2 computer is a 400MHz PIII which runs
Red Hat Linux 7.3. The processor speed is adequate
to process a stereo pair a few times a minute. When
not running stereo, the processor is idle most of the

time.

4 Path Planning

The flow of the low-level control is shown in Figure
1. When the stereo vision is operational, SR2 uses
a variation on the NaT algorithm [9, 12]. This algo-
rithm calculates the instantaneous heading and speed
for the rover from the composition of spun potential
fields that are placed in the map representation for
each physical obstacle. The spinning of the fields as-
sures that the vehicle will not get stuck in a local min-
ima. The vision system is used to generate the NaT
map. The other sensors can cause the robot to stop
or take immediate avoidance action if the robot gets
too close to an obstacle.

The SR2 server is the interface between the low-
level navigation system (written in C++) and the
JAVA rover controller, which incorporates movement
behaviors, and talks to the mission planner.

5 Onboard Robot Control

SR2 can either be tele-operated or put in au-
tonomous mode. In autonomous mode, it controls
itself and avoids obstacles in order to reach a goal,
or series of goals, specified by the user.

5.1 Autonomous navigation

For autonomous navigation, the user must first
specify a mission. A mission consists of a final des-
tination, called the goal, and optionally, a series of in-
termediate points that it should pass through to reach
the goal, called waypoints. The waypoints allow the
user to set a path around large known obstacles in or-
der to reduce the time required for the robot to reach
the goal. Both waypoints and goal points are specified
in rectangular coordinates, as is the current location
of the rover (a polar coordinate input option is also
available to the user).

In order to be able to travel to a given point, the
rover must first know its current location. When start-
ing a mission, the user will typically reset the rovers
location to the origin to make specifying waypoints
and goal points simpler. From there, its up to the
rover to track its own position as it carries out the
mission (see section 3).

5.2 Obstacle Detection and Avoidance

When in autonomous navigation mode, the rover
tries to travel in a straight line to the next waypoint
or goal, but obstacles may lie in the chosen path. Not
counting the stereo vision system, there are two meth-
ods the rover uses to detect obstacles: range sensors
and electronic compass data.

The rover’s ten forward facing range sensors are
clustered into three logical categories: right, middle,
and left. When an obstacle is detected by the range
sensors, the exact behavior chosen for avoidance varies
based on the cluster that detected the obstacle. If
the right cluster detects an obstacle, the rover backs
up for several seconds, then rotates briefly to the left
(counter-clockwise) and attempts to travel forward for
several seconds. This procedure is repeated until the
right sensor cluster no longer detects any obstacles and
the rover is able to travel forward without interruption
for a specified number of seconds[6]. Once the rover
has successfully gone around the obstacle, it recalcu-
lates the path to the next destination based upon its
new location [7]. The same algorithm is used to avoid
obstacles detected by the left sensor cluster, with the
exception of rotating to the right (clockwise) rather
than the left. Detected holes or cliffs are treated the
same as obstacles.

Figure 2: SR2 moving along a ridge-line until an ac-
ceptable slope is found (pathline added)

The middle sensor cluster is set back farther than
the left and right sensors. As a result, obstacles de-
tected by the middle cluster are typically detected
when they are at a much closer distance than those
detected by the left or right sensors. Additionally,

SR2 Low Level Control Diagram |

' Req_svsinfo *
Svs_info, stereo_pair, disparity
{ Save_svs
A
stereo
vision
Obstacle_array steren_pair
-+ A disparity
ey | Sharp_range1-3 |
; = Sharp_range1-8
InSl_SPEEd p_ g
inst_direction Sharp_distance
v v Inst_speed
inst_direction Left_motor
Speed_cmd, ;
direction_cmd | Y
- motor_contro

A

AA + A 1

Inst_speed
inst_direction T

Left_speed
right_speed

Right_motor

[Avoid_tilt(pitch))

“ Yaw, pitch

Left_rpm, right_rpm

Resume_sys, sleep_sys, sleep_hd, sleep_wavlan

{ Read_compass compass

Power_status

{ Power monitor

System_manager

Power status

Log_file

Figure 1: Flow of Control in SR2

since this cluster detects obstacles that are directly
in front of the rover, a larger correction is needed to
go around the obstacles and so the rover turns for
a longer period. Aside from that, the algorithm for
avoiding obstacles in the middle of the range of view
was nearly identical to that for the left and right sen-
sors. The middle cluster was actually subdivided into
left and right sensors to allow easy determination of
which direction to rotate when avoiding an obstacle.
In addition to range sensors, the rover would also take
into account pitch and roll readings to avoid trying to
navigate up or down too extreme of a slope.

During field trials, this technique of obstacle avoid-
ance proved quite effective after the sensors were prop-
erly calibrated and ideal durations of each movement
phase (reverse, rotate, forward) were determined. The
rover was even able to navigate out of semi-circular
arrangements of rocks. By continually rotating in the
same direction until no obstacle is detected it ensures,
that at worst, the rover would have to backtrack the

way it came to avoid complex obstacles, such as those
that completely surrounded it (e.g., Figure 2).

6 Remote User Interface

The operator of the rover issues commands and re-
ceives feedback via a remote networked graphical in-
terface. All Commands are human readable text and
can be entered on a simple command line if desired,
or more easily via graphical controls. Most of the sen-
sor and status feedback sent from the rover is also in
the form of human readable text with the exception
of images, obstacle data, and mission path data. The
graphical display and controls were divided into two
separate panels: engineering and mission control.

6.1 Engineering Panel

The engineering panel displays real-time log file up-
dates from the rover. In addition, it contains the sim-
ple command line for manually issuing text commands
to the rover. It also contains a simple array of nine
buttons to manually control the movement of the rover
in any direction, as well manual controls for each mo-
tor. In addition to the real-time log file display, this
panel also displays the encoder readings of the motors
to give a rough estimate of speed, as well as power
meters for the computer, batteries, and solar panel.
The engineering panel is primarily intended to test-
ing purposes as well as monitoring low-level system
functions.

6.2 Mission Panel

The mission control panel offers more high-level
functionality than the engineering panel. The mission
panel contains a graphical compass to show the rovers
current heading as well as pitch and roll readings. In
addition to the compass display, the mission panel also
graphically displays sensor readings arranged around a
small icon of the rover to make it easier for the remote
user to interpret the readings (see Figure 3.

The center of the mission panel is dedicated to dis-
playing images from the science cameras. These are
special cameras mounted on a structure on top of the
rover which could be commanded to take stereo images
with the click of a button. The rover would then up-
load the images to the remote interface for displaying.
In addition to the science camera images, the current
images being analyzed by the navigational cameras
could also be retrieved and displayed in a separate di-
alog with the option of automatic updating.

The primary method of control available on this
panel was the mission planner, which provided a
graphical way of setting way-points and goals. Once
the user was satisfied with the mission it could then be
sent to the rover to be carried out under autonomous
navigation. During the actual execution of the mis-
sion, the mission planner would update the location
of the rover icon to show the current location of the
rover and the actual path taken between waypoints.

7 Tests & Results

In June of 2002 the SR2 underwent tests in the
Saltonsea desert in California. Prior to the main run,
a closed loop course at the desert field test site was
used to determine dead-reckoning errors. Several runs

of 200m or more were done and found that the cumu-
lative dead reckoning position error yielded a finish
position within 2% of distance traveled from the start
position, even through rugged terrain with slopes of
up to 15°. The precise heading information from the
compass (or heading gyro in a space mission) makes
dead reckoning quite reliable. The SR2 wheels and
tread were specifically designed to minimize slippage.
The remaining slippage was random and mostly can-
celled out leaving only a small resultant error.

On the final day of testing, the rover was given a
series of way points spaced an average of 122m apart
with the closest pair about 25m apart and the farthest
just under 200m. The total length of the traverse was
1.3km. The way-points were selected in order to steer
the robot around major geologic features. These fea-
tures were all of sufficient size that they would have
been easily detectable from an orbiting camera of the
kind planned for future Mars missions.

The way-points were uploaded to the rover, and it
started its traverse at 12:30pm, During the next five
hours, the robot autonomously traveled between way
points. Direct intervention was needed to restore the
robot’s state after a shutdown caused by a heat related
mechanical failure (see [8]), and for configuring the
robot to take “science” images. The robot operated
completely autonomously for navigating between way-
points and for obstacle avoidance.

10 (0.000)

2 (0.4982,778.2582)
3 (611.7101,7781559)
4 (511.5647,2709838)

50 (543.0935,213.3089)
B: (502.323,187.9098)

70 (4B5.4385,174.5518)
8: (428.5253,164.1945)
9: (389.5156,163.8202)
10: (346.4283,171.4094)
11: (320.2874,185.1632)
120 (295.0027,213.9301)
13 (288.7417,240.8791)
14: (295.4071,275.955)
15 (321.1637,302.2113)
16 (363.0875,211.617)
17: (391.1805,301.8834)

0 0
1 8 8 18 (412.4164,270.0703)

E = 1 (4226072,250.1681) =
1 [“ith o00

File Options Help

Mission Panel | Engineering Panel

Heading: NA
Speed: NA
Fitch NA
Ral NA
Xcoord: NA
Yeoord: NA
Odometer. NA

[Obstacles Sleep | calibrate Sensors

Mission Planner | Snapshot
Connected localnos)

Figure 3: The Mission Panel

The exact path chosen by the rover occasionally
caused some temporary distress to those monitoring
the field test. In order to keep from getting stuck
against a rock, or digging up to much soil during skid
turns, the rover was programmed to rock forwards and
back while performing skid steers. This worked well

but took time, so the robot only turned when needed
to go around an obstacle, or when it’s heading devi-
ated from the goal by more than 10°. When the robot
came upon a large rock or ridge-line it seemed it more
often than not would turn the “wrong” way, resulting
in more avoidance maneuvers than would have been
necessary if the rover had been “smarter”.

Another behavior of SR2’s was the maximum slope
avoidance. If a slope exceeded 15°, the robot would
alter its heading until an acceptable slope angle was
reached. After traveling a couple meters, the rover
would turn back towards its next way-point. During
this correction, the slope would often increase causing
the robot to again turn away. Depending on where in
the corrective turn the slope exception was discovered,
the rover would either tack back and forth like a sail
boat going into the wind, or would describe a scalloped
shape course. To the uninitiated viewer, the robot’s
actions often appeared horribly inefficient.

However, all of these observational anxieties were
groundless and could be relieved by simply not fol-
lowing the robot continuously, but rather checking in
with it every fifteen minutes or so. At fifteen minute or
larger intervals, the robot had always made significant
progress, and had always managed to unstick itself.

While not burdened by the science requirements
of Sojourner, SR2 was able to navigate further in 30
minutes than Sojourner did in 80 days through sim-
ilar terrain and with a vehicle of the same general
size. We believe that SR2 is the first vehicle of this
class to accomplish this level of autonomously navi-
gated and powered traverse. A key result is that the
rover was able to navigate around hundreds of obsta-
cles and find the pathways through ridge lines with-
out any long range sensors. The stereo vision was not
used. The range sensors were used as threshold prox-
imity sensors. Simple sensing combined with a few
clever, but simple behaviors is very powerful. This
has been established in the literature for short range
indoor robots [2]. We believe that SR2 shows that this
strategy is a suitable replacement or at least supple-
ment to current mission philosophy. We will not be
able to remotely explore Mars until we are willing to
delegate some level of control to the robots.

Acknowledgments

The authors wish to thank the other members of the
SR2 engineering team: Matt Roman, Tim Hunt &
Alois Winterholler and the SR2 science team Mike Ma-
lin & Mike Ravine. This work was funded in part by
a grant from Malin Space Science Systems Inc.

References

(1]

M. Bohlinger. Magnetic sensor descrip-
tion hmr3000. http://www.ssec.honeywell.com-
/magnetic/description/desc_3000.html, 2002.

R. A. Brooks. A robust layered control system
for a mobile robot. IEEE Journal on Robotics
and Automation, RA-2(1), Mar 1986.

N. Cabrol, E. Grin, V. Gulick, C. McKay,
R. Greeley, M. Sims, and G. Briggs. Rover mo-
bility & sampling strategy on mars: The case for
gusev crater. In Proceedings of the Lunar Plane-
tary Science Conference #27, 1996.

K. Konolige.
/SVS, 2002.

http://www.ai.sri.com/software-

M. Malin. Personal communication., April 2002.

D. P. Miller. Rover navigation through behavior
modification. In Proceedings of the NASA Space
Operations Automation and Robotics Workshop,
Albuquerque, NM, June 1990.

D. P. Miller, R. S. Desai, E. Gat, R. Ivlev, and
J. Loch. Reactive navigation through rough ter-
rain: Experimental results. In Proceedings of
the 1992 National Conference on Artificial Intel-
ligence, pages 823-828, San Jose, CA, 1992.

D. P. Miller, T. Hunt, M. Roman, S. Swindell,
L. Tan, and A. Winterholler. Experiments with a
long-range planetary rover. In Proceedings of the
The 7th International Symposium on Artificial
Intelligence, Robotics and Automation in Space,
Nara, Japan, May 2003. ISAS, NAL, NASDA.

Marc Slack. Situationally Driven Local Naviga-
tion for Mobile Robots. PhD thesis, Department
of Computer Science, Virginia Tech., 1990.

D. B. Stewart. How to choose a sensible sampling
rate. Embedded System, pages 20-27, July 2002.

C. Stoker. The search for life on mars: The
role of rovers. Journal of Geophysical Research,
103(E12):28557-28575, 1998.

L. Tan and D. P. Miller. Navigation templates
for psa. In Proceedings of the First Interna-
tional NAISO Conference on Autonomous Intel-
ligent Systems, Geelong, Australia, 2002.

J. C. Zufferey. Sharp
http://dmtwww.epfl.ch/jzuffere-
/SharpGP2D12_E.html, April 2001.

gp2d12.

