
Navigation Templates for PSA

Li Tan & David P. Miller

School of Aerospace and Mechanical Engineering

University of Oklahoma

Norman, OK 73019 USA

litan@ou.edu & dpmiller@ou.edu

Abstract

Navigation Templates (NaTs) provide a method for
constructing highly flexible navigation plans which
capture the essence of the navigation situation (i.e., the
task and relevant environmental constraints). This paper
presents NaTs as applied to a dimensional simulator of
NASA’s Personal Satellite Assistant the PSA. The
specifics of this application required that the basic NaT
algorithm be supplemented with certain memory additions
in order to function reliably with the narrow beam range
sensors with which the PSA simulator is equipped. These
modifications and the results are presented.

Keywords:

Navigation templates, navigation plan, robot navigation

1. Background

The PSA is a new intra-vehicular robot designed by
NASA for use inside the International Space Station.
Each PSA will be equipped with a camera, display,
microphone , speakers and a full micro-gravity mobility
system. The PSAs will be used to keep track of
object/personnel whereabouts in the station,
teleconferencing and monitoring of experiments [1,2].
Because the Space Station is a dynamic environment, the
PSA needs to be able to find its way from location to
location even when objects are moved contrary to its
internal map and even when objects are moving through
the same space at the same time in the area it is trying to
traverse. PSAs must never run into an astronaut, and
should make every possible effort to get out of the
astronaut’s way.

The experiments described in this paper were done for the
PSA 2D simulator. This prototype PSA robot floats over

an air-bearing table. Its motion is restricted to X, Y and
rotational movement. The usable area of the table is
approximately two meters on a side.

2. Overview

When given a task, PSA must be able to quickly
plan a plausible route that would allow it to meet its goals.
Once PSA decides to attempt a task, it must be able to
dynamically plan its path through the actual space. It
must be able to modify its actual path from the planned
route as needed, while projecting the consequences of
those actions throughout the entire plan. There are
actually two programs that would be used for PSA
navigation. The first we will call the route planner. This
system would use a stored model of the environment. The
second program will be the path planning system, and
real-time issues will dominate the decisions of the
planner.

The Navigation Templates (NaTs) algorithm is used to
cover both of these needs. Two independent programs are
developed, NaTs algorithm with known objects and NaTs
algorithm with sensor navigation. Simulation programs
have also developed based on Open Inventor [3] C++. in
order to test the programs.

3. Navigation Templates

Navigation Templates (NaTs) [4,5] are primitive building
blocks for constructing highly flexible navigation plans
which capture the essence of the navigation situation (i.e.,
the task and relevant environmental constraints). There
are two types of Navigation templates: those that are used
to characterize the basic local navigation task being
pursued (Substrate Navigation Templates, S-NaTs), and

those used to model known environmental constraints and
characterize the relationship of constraints to the
navigation task (Modifier Navigation Templates, M-
NaTs). Once a navigation plan has been built from a set of
Navigation Templates, a powerful heuristic is employed
to isolate the currently critical aspects of the plan and
quickly generate guidance for the robot’s low-level
control system. Figure 1 shows an example of a NaTs-
based navigation plan. NaTs have been used for a variety
of robot navigation applications, some of which are
described in [6].

Figure 1: An example of NaTs based navigation plan
(from [4])

4. Coordinate System

There are one global and two local coordinate systems in
the simulation program. The global system’s center is at
the center of the air-bearing table, and its X-axis is Open
Inventor’s X-axis that points to the right of the window
and its Y-axis is Open Inventor’s Z-axis that points out of
the window. The global system is used to process sensor
or known object data and part of the parameters of the M-
NaTs and vectors are created based on this system.

The first local system’s origin is the PSA simulator’s
center and its X-axis and Y-axis are parallel to those of
global system. The PSA simulator’s normal is identical to
this Y-axis.

The second local system (PSA system’s) origin is the
PSA simulator’s center and its Y-axis is the current S-
NaTs. The X-axis is in the direction that follows Right-
Hand-Rule and its Z-axis points into the window.

In the simulation program, the PSA simulator does not
change its orientation. However, the PSA simulator’s

orientation would be changed to follow S-NaT. Thus, in
practice, only the second local system is used.

These three coordinate systems are illustrated as Fig 2.

Figure 2: Coordinate Systems

5. NaTs Algorithm Program

Two NaTs algorithm programs were developed. One is
with known objects and another one is with sensor
navigation and object memory.

5.1, NaTs Algorithm Program With Known
Objects

In this program, all objects are defined by the user prior to
the robot’s traverse. The location and shape of all of the
objects in the environment are available to the NaTs
system. The parameters of objects are obtained through a
function processing input objects. The objects in the
simulation are defined by their center, orientation and
length. A function is then called to convert the above
inputs to end points and distances, then another function
creates obstacle structures which convert known object
parameters to those structures NaTs algorithm need, such
as spin, Relevant Primary Bound and so on. The
algorithm goes over all the effective objects (objects
whose position might effect the robot’s path) and finally
outputs a navigation path for PSA simulator. The output
is in the form of an instantaneous gradient of direction for
a particular position. To calculate a path,

1. start the robot at its original position

2. calculate the gradient for that position based on
the NaTs of known objects (M-NaTs) and the
NaT from the goal (S-Nat).

3. move the robot (in simulation) through a time
step along that gradient

4. calculate the robot’s new position

5. got to step 2 and repeat until the robot’s calculate
position is sufficiently close to the goal.

5.2. NaTs Algorithm Program With Sensor
Navigation

In this program, the PSA simulator is assumed to navigate
by range sensors. The sensors on the PSA are an array of
SHARP GP2D12 distance sensors which output an analog
value corresponsding to the distance to the object within
the field of view of the sensor. The viewing angle of each
sensor is significantly less than a degree. The effective
range of the sensors is from approximately 6cm to one
meter.

The algorithm only processes the objects (points) that the
simulator can sense. The objects consists of points that are
obtained directly from sensors, so there is no limitation on
the shape of the objects in the model. Sensed points are
clustered to the same object if they are within sufficient
distance. This distance is determined by the size of the
robot – if the robot could not fit between two sensed
points then for all practical purposes those two points
form a single obstacle around which the robot must
navigate.

A function is called to create the obstacle structures which
NaTs algorithm need such as spin, Relevant Primary
Bounds, and so on. The algorithm goes over all effective
objects and finally outputs a navigation path for the PSA
simulator. The algorithm also provides object memory
whose function is to compare objects in memory with
currently sensed objects and assure that current objects
have the same spin direction to previously sensed objects
that have similar locations in space.

Without this memory, slight changes in viewing angle
could cause the currently viewed Nat to have the opposite
spin of the Nat that was viewed in a similar location
moments previously. This could cause the robot to
reverse course, causing the next observation set to be
from a previous viewpoint and thereby causing the newly
viewed NaT to go back to the previous spin, leading to the
robot getting stuck oscillating between views. Because
the only sensory data coming in to the robot from the
outside objects is a sparse set of range points, it is not
possible to absolutely identify any of those points as
belonging to the same object as previously observed
points.

5.3. Object Memory

PSA simulator could stall when navigation plan is created
through range sensor information. This situation is
illustrated as follows. In (a), A, B, C, and D are points
PSA can sense, and they are clustered to two objects with
two different spin directions (PSA does not know
anything about the two objects except for the sensed
points); in (b), as PSA moves forwards in the direction of
arrow, it senses A’, B’, C’, D’, E’ and F’ points. Since
these points are close, they form only one object with one
spin direction. A’ and B’ are so close that PSA cannot go
through, thus, it moves backward and the situation returns
to the one shown in Figure 3(a). Then, PSA moves
forward again since it senses two different objects again,
starting an oscillation. PSA is stuck.

In order to solve this problem, object memory is
introduced. Object information, such as center, contact
point, left/right most point and spin direction are saved in
this object memory.

Figure 3: Spin Oscillations from Changes in
Observation Position

PSA always compares currently clustered objects with
objects in the memory. Distances between centers, contact
points, and left/right most points are evaluated. The
current object is assigned with the same spin direction as
objects in the memory if any of them falls into the
specified range. This distance range is usually decided
according to the dimension of PSA plus a certain margin.
The information for the objects in the memory is updated
after the comparison.

The effect of object memory is shown in (c). Every time
after PSA checks memory, sensed objects are forced to
coordinate spin direction with those in memory, thus PSA
can move round the objects, and oscillations are avoided.

5.4. Object Memory and Dynamic Objects

While object memory is useful for avoiding oscillations, it
cannot be used indiscriminately. Two problems occur if
object memory persists forever.

First, if objects persisted in memory indefinitely then
NaTs would grow in size with dead-reckoning errors. A
small object that is observed multiple times will have the
observation points spread out over space as a function of
the observation errors and absolute positioning error of
the robot, in addition to the object’s size. Assuming that
the errors never exceed the robot’s dimension between
observation, each observation will grow the size of the
Nat. Should a large error occur, then a new separate Nat
will be created for the erroneous observation and the
robot will navigate around phantom objects.

A second issue with memory persistence is dynamic
objects. If the PSA encounters an astronaut in the Space
Station, the robot should move around the astronaut. But
if the astronaut is moving as well, and if memory persists,
then the astronaut will form a barrier that is the thickness
of an astronaut and the length of the observed movement.

To overcome both of these problems, it is important to
have object memories fade over time. The optimal
memory decay rate depends on the amount of dynamics in
the environment, the speed of the robot and the absolute
positioning error. If all are small then memory can persist
for long times. If they are large them old object memories
must be purged after only a few observation cycles.

6. NaTs Simulation

Figure 4: Known Objects Simulation

6.1. Overview

The simulation is based on Open Inventor C++. Open
Inventor is the de facto standard for the development,
management, and interchange of 3D graphics. It is an

object-oriented developer's toolkit for C++. In order to
simulate and visualize NaTs algorithm, two Win32
console simulation programs are developed, one is for
NaTs algorithm with known object and another one is for
NaTs with sensor navigation.

Figure 5: Sensed Objects Simulation Window

6.2, Simulation of NaTs with Known Objects

The following picture shows simulation window for NaTs
with known objects.

The object type is limited to very thin panel (linear type
object). The PSA is placed at original start position, and
green point indicates target position. The simulation
program can be started, stopped and reset by press
START, STOP and RESET buttons.

The input for the simulation is initial and target positions
of PSA simulator, the number of linear type objects, and
the parameters of objects in the format of X coordinate of
center, Y coordinates of center, orientation (degree) and
length.

After all parameters are entered, the Inventor simulation
window comes up as shown in Figure 4.

6.3. Simulation of NaTs with Sensor
Navigation

In this simulation, objects can constructed from cubes and
cylinders. The objects are used by the sensor simulator to
generate sensor readings, but the objects are not known to
the navigation system. The input for the simulation is
Initial and target positions of PSA simulator, the number
and type objects, and the parameters of objects in the
format of X coordinate of center, Y coordinates of center,

orientation (degree). Sensed points are marked in
different color according to its spin directions.

Figure 6: Sensed Points

7. Conclusion

We have presented an implementation of Slack’s NaT
algorithm tailored to the needs of NASA’s PSA simulator.
The NaT algorithm works very well for both known
objects and sensor navigation in the simulation. Our
memory extensions to Slack’s original system allows
reliable navigation with sparse point sensors. The object
memory can avoid some oscillation situations during PSA
simulator navigation. Improvements in memory efficiency
are still desirable.

Acknowledgements

The authors wish to thank Adam Sweet and Greg Dorais
for their help on this project. This work was supported in
part under USRA Contract # 08008-002-008-001 and
NASA Contract # NCC-2-8032

References

[1] The Personal Satellite Assistant, http://ic-
www.arc.nasa.gov/ic/psa/.

[2] Yuri Gawdiak1, Jeff Bradshaw2, Brian Williams3,
Hans Thomas, R2D2 in a Softball: The Portable
Satellite Assistant. in the Proceedings of the 2000
ACM Intelligent User Interfaces Conference, New
Orleans, January 2000.

[3] Josie Wernecke, “The Inventor mentor”

[4] Marc Slack, Dissertation title: Situationally Driven
Local Navigation for Mobile Robots, Ph.D.,
Department of Computer Science, Virginia Tech,
May 1990.

[5] Marc G. Slack, Navigation Templates: Mediating
Qualitative Guidance and Quantitative Control in
Mobile Robots, IEEE Trans. On System, Man, and
Cybernetics, Vol. 23, No. 2, March, 1993

[6] R. P. Bonasso, R. J. Firby, E. Gat, D. Kortenkamp, D.
Miller, and M. Slack, Experiences with an
Architecture for Intelligent, Reactive Agents, Journal
of Experimental and Theoretical Artificial
Intelligence, Vol. 9, No. 1, 1997.

